数组

Channing Hsu

704. 二分查找

力扣链接

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

思路

视频:二分法

这道题的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的。二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边 界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

二分法的区间一般为两种,左闭右闭即**[left, right],或者左闭右开即[left, right)**。

左闭右闭

定义 target 在左闭右闭的区间里,**也就是[left, right] **。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 版本一
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};

左闭右开

定义 target 在一个在左闭右开的区间里,也就是**[left, right)** 。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

27. 移除元素

力扣题目链接

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。

示例 1:
给定 nums = [3,2,2,3], val = 3,
函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。
你不需要考虑数组中超出新长度后面的元素。

示例 2:
给定 nums = [0,1,2,2,3,0,4,2], val = 2,
函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。

思路

有的同学可能说了,多余的元素,删掉不就得了。

要知道数组的元素在内存地址中是连续的,不能单独删除数组中的某个元素,只能覆盖。

暴力求解

27.移除元素-暴力解法

  • 时间复杂度:

  • 空间复杂度:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution{
public:
int removeElement(vector<int>& nums, int val) {
int size = nums.size();
for(int i = 0; i < size; i++){
if(nums[i] == val){ // 发现需要移除的元素就将后面所有元素向前移一位
for(int j = i + 1; j < size; j++){
nums[j - 1] = nums[j];
}
i--; // 删除当前的i,后面的依次补上来,在判断下一个顶替是不是等于val,所以要-1
size--; // 数组的大小变小
}
return size;
}
};

快慢指针

双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

定义快慢指针

  • 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
  • 慢指针:指向更新 新数组下标的位置

删除过程如下:快慢指针同时向前移动,然后再判断快指针是不是等于val。

27.移除元素-双指针法

  • 时间复杂度:
  • 空间复杂度:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slow = 0;
for (int fast = 0; fast < nums.size(); fast++){
if (val != nums[fast]){
nums[slow] = nums[fast];
slow++;
}
}
return slow;
cout << nums.size()<<endl;
}
};

977.有序数组的平方

力扣题目链接

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1:

  • 输入:nums = [-4,-1,0,3,10]
  • 输出:[0,1,9,16,100]
  • 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]

示例 2:

  • 输入:nums = [-7,-3,2,3,11]
  • 输出:[4,9,9,49,121]

暴力排序

最直观的想法,莫过于:每个数平方之后,排个序,美滋滋,代码如下:

1
2
3
4
5
6
7
8
9
10
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
for (int i = 0; i < A.size(); i++) {
A[i] *= A[i];
}
sort(A.begin(), A.end()); // 快速排序
return A;
}
};

时间复杂度: , 可以说是O(nlogn)的时间复杂度。

双指针法

数组其实是有序的, 只不过负数平方之后可能成为最大数了。

那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。

此时可以考虑双指针法了,i指向起始位置,j指向终止位置。

定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。

如果A[i] * A[i] < A[j] * A[j] 那么result[k--] = A[j] * A[j];

如果A[i] * A[i] >= A[j] * A[j] 那么result[k--] = A[i] * A[i];

如动画所示:

写出如下代码:

  • 时间复杂度:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
int i = 0;
int j = A.size() - 1;
int k = j;
vector<int> result(A.size(), 0); // 新建长度与A相同的新数组
while (i <= j) // 注意这里要i <= j,因为最后要处理两个元素
{
if(A[i] * A[i] > A[j] * A[j]){
result[k--] = A[i] * A[i];
i++;
} else {
result[k--] = A[j] * A[j];
j--;
}
}
return result;
}
};

相对于暴力排序的解法O(n + nlog n)还是提升不少的。

209.长度最小的子数组

力扣题目链接

给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

示例:

  • 输入:s = 7, nums = [2,3,1,2,4,3]
  • 输出:2
  • 解释:子数组 [4,3] 是该条件下的长度最小的子数组。

暴力解法

两个for循环,然后不断的寻找符合条件的子序列

  • 时间复杂度:
  • 空间复杂度:

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX; // 最终的结果
int sum = 0; // 子序列的数值之和
int subLength = 0; // 子序列的长度
for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
sum = 0;
for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
sum += nums[j];
if (sum >= s) { // 一旦发现子序列和超过了s,更新result
subLength = j - i + 1; // 取子序列的长度
result = result < subLength ? result : subLength;
break; // 因为是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};

滑动窗口

接下来就开始介绍数组操作中另一个重要的方法:滑动窗口

所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出要想的结果

在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。

但如果只用一个for循环,那么这个循环的索引,一定是表示滑动窗口的终止位置。

那么滑动窗口的起始位置如何移动呢?

这里还是以题目中的示例来举例,s=7, 数组是 2,3,1,2,4,3,来看一下查找的过程:

209.长度最小的子数组

在本题中实现滑动窗口,主要确定如下三点:

  • 窗口内是什么?

    • 满足其和 ≥ s 的长度最小的连续子数组。
  • 如何移动窗口的起始位置?

    • 如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
  • 如何移动窗口的结束位置?

    • 窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。

解题的关键在于 窗口的起始位置如何移动,如图所示:

leetcode_209

可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将暴力解法降为

C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
while (sum >= s) {
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength;
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

一些录友会疑惑为什么时间复杂度是O(n)

不要以为for里放一个while就以为是O(n^2)啊, 主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)。

59.螺旋矩阵II

力扣题目链接

给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。

示例:

输入: 3
输出:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]

思路

大家还记得在这篇文章数组:每次遇到二分法,都是一看就会,一写就废中讲解了二分法,提到如果要写出正确的二分法一定要坚持循环不变量原则

而求解本题依然是要坚持循环不变量原则。

模拟顺时针画矩阵的过程:

  • 填充上行从左到右
  • 填充右列从上到下
  • 填充下行从右到左
  • 填充左列从下到上

由外向内一圈一圈这么画下去。

可以发现这里的边界条件非常多,在一个循环中,如此多的边界条件,要画每四条边,每画一条边都要坚持一致的左闭右开,或者左开右闭的原则,这样这一圈才能按照统一的规则画下来。

那么我按照左闭右开的原则,来画一圈,大家看一下:

这里每一种颜色,代表一条边,遍历的长度,可以看出每一个拐角处的处理规则,拐角处让给新的一条边来继续画。

这也是坚持了每条边左闭右开的原则。

整体C++代码如下:

  • 时间复杂度 : 模拟遍历二维矩阵的时间
  • 空间复杂度
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;

// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j = starty; j < n - offset; j++) {
res[startx][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i = startx; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}

// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;

// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}

// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};

另一种思路

  • 生成一个 n×n 空矩阵 mat,随后模拟整个向内环绕的填入过程:

    • 定义当前左右上下边界 l,r,t,b,初始值 num = 1,迭代终止值 tar = n * n

    • num <= tar 时,始终按照 从左到右 从上到下 从右到左 从下到上 填入顺序循环,每次填入后:

      • 执行 num += 1:得到下一个需要填入的数字;
      • 更新边界:例如从左到右填完后,上边界 t += 1,相当于上边界向内缩 1。
    • 使用num <= tar而不是l < r || t < b作为迭代条件,是为了解决当n为奇数时,矩阵中心数字无法在迭代过程中被填充的问题。

  • 最终返回 mat 即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
int num = 1;
int left = 0, top = 0, right = n - 1, bottom = n - 1;
vector<vector<int>>res(n, vector<int>(n, 0));

while (num <= n*n) {
// 左→右 填充列
for (int i = left; i <= right; i++) res[top][i] = num++;
top++;

// 上→下 填充行
for (int i = top; i <= bottom; i++) res[i][right] = num++;
right--;

// 右→左 填充列
for (int i = right; i >= left; i--) res[bottom][i] = num++;
bottom--;

// 下→上 填充行
for (int i = bottom; i >= top; i--) res[i][left] = num++;
left++;
}
return res; //别忘了返回值!
}
};

数组总结

数组理论基础

数组是非常基础的数据结构,在面试中,考察数组的题目一般在思维上都不难,主要是考察对代码的掌控能力 。也就是说,想法很简单,但实现起来可能就不是那么回事了。

首先要知道数组在内存中的存储方式,这样才能真正理解数组相关的面试题

数组是存放在连续内存空间上的相同类型数据的集合。

数组可以方便的通过下标索引的方式获取到下标下对应的数据。

举一个字符数组的例子,如图所示:

需要两点注意的是

  • 数组下标都是从0开始的。
  • 数组内存空间的地址是连续的

正是因为数组的在内存空间的地址是连续的,所以在删除或者增添元素的时候,就难免要移动其他元素的地址。

例如删除下标为3的元素,需要对下标为3的元素后面的所有元素都要做移动操作,如图所示:

而且大家如果使用C++的话,要注意vector 和 array的区别,vector的底层实现是array,严格来讲vector是容器,不是数组。

  • 数组的元素是不能删的,只能覆盖。

那么二维数组直接上图,大家应该就知道怎么回事了

那么二维数组在内存的空间地址是连续的么?

来举一个Java的例子,例如: int[][] rating = new int[3][4];, 这个二维数组在内存空间可不是一个 3*4 的连续地址空间

看了下图,就应该明白了:

此时的内存地址空间应该是一个对应行数的大小为3的连续内存地址空间,其每一个元素指向三条对应列数的大小为4的连续内存地址空间,所以Java的二维数组在内存中不是 3*4 的连续地址空间,而是四条连续的地址空间组成!

数组的经典题目

在面试中,数组是必考的基础数据结构。

其实数组的题目在思想上一般比较简单的,但是如果想高效,并不容易。

之前一共讲解了四道经典数组题目,每一道题目都代表一个类型,一种思想。

1. 二分法

这道题目考察数组的基本操作,可以使用暴力解法,通过这道题目,如果追求更优的算法,建议试一试用二分法,来解决这道题目

  • 暴力解法时间复杂度:O(n)
  • 二分法时间复杂度:O(logn)

在这道题目中讲到了循环不变量原则,只有在循环中坚持对区间的定义,才能清楚的把握循环中的各种细节。

二分法是算法面试中的常考题,建议通过这道题目,锻炼自己手撕二分的能力

2. 双指针法

双指针法(快慢指针法):通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

  • 暴力解法时间复杂度:O(n^2)
  • 双指针时间复杂度:O(n)

这道题目迷惑了不少同学,纠结于数组中的元素为什么不能删除,主要是因为以下两点:

  • 数组在内存中是连续的地址空间,不能释放单一元素,如果要释放,就是全释放(程序运行结束,回收内存栈空间)。
  • C++中vector和array的区别一定要弄清楚,vector的底层实现是array,封装后使用更友好。

双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组和链表操作的面试题,都使用双指针法。

3. 滑动窗口

本题介绍了数组操作中的另一个重要思想:滑动窗口。

  • 暴力解法时间复杂度:O(n^2)
  • 滑动窗口时间复杂度:O(n)

本题中,主要要理解滑动窗口如何移动 窗口起始位置,达到动态更新窗口大小的,从而得出长度最小的符合条件的长度。

滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)的暴力解法降为O(n)。

如果没有接触过这一类的方法,很难想到类似的解题思路,滑动窗口方法还是很巧妙的。

4.模拟行为

在这道题目中,再一次介绍到了循环不变量原则,其实这也是写程序中的重要原则。

相信大家有遇到过这种情况: 感觉题目的边界调节超多,一波接着一波的判断,找边界,拆了东墙补西墙,好不容易运行通过了,代码写的十分冗余,毫无章法,其实真正解决题目的代码都是简洁的,或者有原则性的,大家可以在这道题目中体会到这一点。

总结导图

评论