二叉树的遍历方式

Channing Hsu

二叉树理论基础篇

定义

二叉树是一种非线性数据结构,代表着祖先与后代之间的派生关系,提现“一分为二”的分治逻辑。与链表类似,二叉树的基本单元室节点,每个节点包括一个值,两个指针。

1
2
3
4
5
6
struct TreeNode {
int val; // 节点
TreeNode *left; // 左子结点指针
TreeNode *right; // 右子节点指针
TreeNode(int x) : val(x), left(nullptr), right(nullptr);{}
};

  • 根节点 Root Node:位于二叉树顶层的节点,没有父节点。
  • 叶节点 Leaf Node:没有子节点的节点,其两个指针均指向 None 。
  • 节点的层 Level:从顶至底递增,根节点所在层为 1 。
  • 节点的度 Degree:节点的子节点的数量。在二叉树中,度的范围是 0, 1, 2 。
  • 边 Edge:连接两个节点的线段,即节点指针。
  • 二叉树的高度:从根节点到最远叶节点所经过的边的数量。
  • 节点的深度 Depth:从根节点到该节点所经过的边的数量。
  • 节点的高度 Height:从最远叶节点到该节点所经过的边的数量。

二叉树种类

1. 满二叉树(完美二叉树)

如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。

这棵二叉树为满二叉树,也可以说深度为k,有个节点的二叉树。

2. 完全二叉树

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 个节点。

相信不少同学最后一个二叉树是不是完全二叉树都中招了。

之前我们刚刚讲过优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。

3. 二叉搜索树

前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树

下面这两棵树都是搜索树

4. 平衡二叉树

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

如图:

最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。

C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表

二叉树的存储方式

二叉树可以用指针链式存储,也可以用数组顺序存储。

顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。

链式存储如图:

链式存储是大家很熟悉的一种方式,那么我们来看看如何顺序存储呢?

其实就是用数组来存储二叉树,顺序存储的方式如图:

用数组来存储二叉树如何遍历的呢?

如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。

所以大家要了解,用数组依然可以表示二叉树。

二叉树的递归遍历

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。

那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:

  • 深度优先遍历

    • 前序遍历(递归法,迭代法)
    • 中序遍历(递归法,迭代法)
    • 后序遍历(递归法,迭代法)

    递归思路

    写递归有这三要素:

    1. 确定递归函数的参数和返回值:
      确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。

    2. 确定终止条件:
      写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。

    3. 确定单层递归的逻辑:
      确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。

    以下以前序遍历为例:

    1. 确定递归函数的参数和返回值:因为要打印出前序遍历节点的数值,所以参数里需要传入vector来放节点的数值,除了这一点就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:
    1
    void traversal(TreeNode* cur, vector<int>& vec)
    1. 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:
    1
    if (cur == NULL) return;
    1. 确定单层递归的逻辑:前序遍历是中左右的循序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:
    1
    2
    3
    vec.push_back(cur->val);    // 中
    traversal(cur->left, vec); // 左
    traversal(cur->right, vec); // 右

    时间复杂度:所有节点被访问一次,使用时间,其中为节点数量。

    空间复杂度:在最差情况下,即树退化为链表时,递归深度达到,系统占用栈帧空间。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    /* 前序遍历 */
    class Solution {
    public:
    void preOrder(TreeNode* cur, vector<int>& vec) {
    if (cur == NULL) return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    vec.push_back(cur->val); // 中
    traversal(cur->left, vec); // 左
    traversal(cur->right, vec); // 右
    }
    vector<int> preorderTraversal(TreeNode* root) {
    vector<int> result;
    preOrder(root, result);
    return result;
    }
    };

    /* 中序遍历 */
    void inOrder(TreeNode *root) {
    if (root == nullptr)
    return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root->left);
    vec.push_back(roo t->val);
    inOrder(root->right);
    }

    /* 后序遍历 */
    void postOrder(TreeNode *root) {
    if (root == nullptr)
    return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root->left);
    postOrder(root->right);
    vec.push_back(root->val);
    }

    下图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分:

    1. “递”表示开启新方法,程序在此过程中访问下一个节点。
    2. “归”表示函数返回,代表当前节点已经访问完毕。
  • 广度优先遍历

    • 层次遍历(迭代法)

      二叉树的层序遍历

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      /* 层序遍历 */
      vector<int> levelOrder(TreeNode *root) {
      // 初始化队列,加入根节点
      queue<TreeNode *> queue;
      queue.push(root);
      // 初始化一个列表,用于保存遍历序列
      vector<int> vec;
      while (!queue.empty()) {
      TreeNode *node = queue.front();
      queue.pop(); // 队列出队
      vec.push_back(node->val); // 保存节点值
      if (node->left != nullptr)
      queue.push(node->left); // 左子节点入队
      if (node->right != nullptr)
      queue.push(node->right); // 右子节点入队
      }
      return vec;
      }

在深度优先遍历中:这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。

看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式

  • 前序遍历:中左右
  • 中序遍历:左中右
  • 后序遍历:左右中

大家可以对着如下图,看看自己理解的前后中序有没有问题。

经常会使用递归的方式来实现深度优先遍历栈其实就是递归的一种实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用非递归的方式来实现的。

广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。

二叉树的迭代遍历

为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?

递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。

前序遍历(迭代法)

前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。

为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。

动画如下:

二叉树前序遍历(迭代法)

不难写出如下代码: (注意代码中空节点不入栈

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if (root == NULL) return result;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top(); // 中
st.pop();
result.push_back(node->val);
if (node->right) st.push(node->right); // 右(空节点不入栈)
if (node->left) st.push(node->left); // 左(空节点不入栈)
}
return result;
}
};

中序遍历(迭代法)

为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:

  1. 处理:将元素放进result数组中
  2. 访问:遍历节点

分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。

那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。

那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。

动画如下:

二叉树中序遍历(迭代法)

中序遍历,可以写出如下代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
TreeNode* cur = root;
while (cur != NULL || !st.empty()) {
if (cur != NULL) { // 指针来访问节点,访问到最底层
st.push(cur); // 将访问的节点放进栈
cur = cur->left; // 左
} else {
cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)
st.pop();
result.push_back(cur->val); // 中
cur = cur->right; // 右
}
}
return result;
}
};

后序遍历(迭代法)

再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:

前序到后序

所以后序遍历只需要前序遍历的代码稍作修改就可以了,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if (root == NULL) return result;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
st.pop();
result.push_back(node->val);
if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)
if (node->right) st.push(node->right); // 空节点不入栈
}
reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了
return result;
}
};

二叉树的统一迭代法

针对三种遍历方式,使用迭代法是可以写出统一风格的代码!

中序遍历若使用栈的话,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况

那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。

如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。

迭代法中序遍历

中序遍历代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node->right) st.push(node->right); // 添加右节点(空节点不入栈)

st.push(node); // 添加中节点
st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。

if (node->left) st.push(node->left); // 添加左节点(空节点不入栈)
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.top(); // 重新取出栈中元素
st.pop();
result.push_back(node->val); // 加入到结果集
}
}
return result;
}
};

看代码有点抽象我们来看一下动画(中序遍历):

中序遍历迭代(统一写法)

动画中,result数组就是最终结果集。

可以看出我们将访问的节点直接加入到栈中,但如果是处理的节点则后面放入一个空节点, 这样只有空节点弹出的时候,才将下一个节点放进结果集。

此时我们再来看前序遍历代码。

迭代法前序遍历

迭代法前序遍历代码如下: (注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左
st.push(node); // 中
st.push(NULL);
} else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};

迭代法后序遍历

后续遍历代码如下: (注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
st.push(node); // 中
st.push(NULL);

if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左

} else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};

总结

此时我们写出了统一风格的迭代法,不用在纠结于前序写出来了,中序写不出来的情况了。

但是统一风格的迭代法并不好理解,而且想在面试直接写出来还有难度的。

所以大家根据自己的个人喜好,对于二叉树的前中后序遍历,选择一种自己容易理解的递归和迭代法。

二叉树层序遍历

思路

层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。

需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。

而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。

使用队列实现二叉树广度优先遍历,动画如下:

102二叉树的层序遍历

这样就实现了层序从左到右遍历二叉树。

代码如下:这份代码也可以作为二叉树层序遍历的模板,打十个就靠它了

C++代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que; // 创建一个队列用于层序遍历
if (root != nullptr) que.push(root); // 将根节点入队
vector<vector<int>> res; // 存储层序遍历结果的二维向量

while (!que.empty()) {
int size = que.size(); // 当前层的节点个数
vector<int> vec; // 存储当前层节点值的向量

for (int i = 0; i < size; i++) {
TreeNode* node = que.front(); // 从队列中取出一个节点
que.pop(); // 出队

vec.push_back(node->val); // 将节点值添加到当前层的向量中

if (node->left) que.push(node->left); // 如果左子节点存在,将左子节点入队
if (node->right) que.push(node->right); // 如果右子节点存在,将右子节点入队
}

res.push_back(vec); // 将当前层的向量添加到结果二维向量中
}

return res; // 返回层序遍历的结果
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
## 递归法
class Solution {
public:
void order(TreeNode* cur, vector<vector<int>>& result, int depth)
{
if (cur == nullptr) return;
if (result.size() == depth) result.push_back(vector<int>());
result[depth].push_back(cur->val);
order(cur->left, result, depth + 1);
order(cur->right, result, depth + 1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> result;
int depth = 0;
order(root, result, depth);
return result;
}
};
评论