《代码随想录》贪心法3️⃣
406.根据身高重建队列
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
- 输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
- 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
- 解释:
- 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
- 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
- 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
- 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
- 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
示例 2:
- 输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
- 输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]
提示:
- 1 <= people.length <= 2000
- 0 <= hi <= 10^6
- 0 <= ki < people.length
题目数据确保队列可以被重建
思路
本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。
其实如果大家认真做了135. 分发糖果,就会发现和此题有点点的像。
在135. 分发糖果我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。
如果两个维度一起考虑一定会顾此失彼。
对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?
如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。
那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。
此时可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
那么只需要按照k为下标重新插入队列就可以了,为什么呢?
以图中{5,2} 为例:
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。
所以在按照身高从大到小排序后:
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
局部最优可推出全局最优,找不出反例,那就试试贪心。
刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心,至于严格的数学证明,就不在讨论范围内了。
回归本题,整个插入过程如下:
排序完的people:
[[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]
插入的过程:
- 插入[7,0]:[[7,0]]
- 插入[7,1]:[[7,0],[7,1]]
- 插入[6,1]:[[7,0],[6,1],[7,1]]
- 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
- 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
- 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
此时就按照题目的要求完成了重新排列。
C++代码如下:
1 | // 版本一 |
- 时间复杂度:O(nlog n + n^2)
- 空间复杂度:O(n)
但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。
所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是
改成链表之后,C++代码如下:
1 | // 版本二 |
- 时间复杂度:O(nlog n + n^2)
- 空间复杂度:O(n)
大家可以把两个版本的代码提交一下试试,就可以发现其差别了!
关于本题使用数组还是使用链表的性能差异,我在贪心算法:根据身高重建队列(续集)中详细讲解了一波
总结
关于出现两个维度一起考虑的情况,已经做过两道题目了,另一道就是135. 分发糖果。
其技巧都是确定一边然后贪心另一边,两边一起考虑,就会顾此失彼。
这道题目可以说比135. 分发糖果难不少,其贪心的策略也是比较巧妙。
最后我给出了两个版本的代码,可以明显看是使用C++中的list(底层链表实现)比vector(数组)效率高得多。
对使用某一种语言容器的使用,特性的选择都会不同程度上影响效率。
所以很多人都说写算法题用什么语言都可以,主要体现在算法思维上,其实我是同意的但也不同意。
对于看别人题解的同学,题解用什么语言其实影响不大,只要题解把所使用语言特性优化的点讲出来,大家都可以看懂,并使用自己语言的时候注意一下。
对于写题解的同学,刷题用什么语言影响就非常大,如果自己语言没有学好而强调算法和编程语言没关系,其实是会误伤别人的。
这也是我为什么统一使用C++写题解的原因
435. 无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
- 输入: [ [1,2], [2,3], [3,4], [1,3] ]
- 输出: 1
- 解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
- 输入: [ [1,2], [1,2], [1,2] ]
- 输出: 2
- 解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
- 输入: [ [1,2], [2,3] ]
- 输出: 0
- 解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
思路
相信很多同学看到这道题目都冥冥之中感觉要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?
其实都可以。主要就是为了让区间尽可能的重叠。
我来按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了。
此时问题就是要求非交叉区间的最大个数。
这里记录非交叉区间的个数还是有技巧的,如图:
区间,1,2,3,4,5,6都按照右边界排好序。
当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?
就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。
接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了。
区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。
总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。
C++代码如下:
1 | class Solution { |
- 时间复杂度:O(nlog n) ,有一个快排
- 空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
大家此时会发现如此复杂的一个问题,代码实现却这么简单!
补充
补充(1)
左边界排序可不可以呢?
也是可以的,只不过 左边界排序就是直接求 重叠的区间,count为记录重叠区间数。
1 | class Solution { |
其实代码还可以精简一下, 用 intervals[i][1] 替代 end变量,只判断 重叠情况就好
1 | class Solution { |
补充(2)
本题其实和452.用最少数量的箭引爆气球非常像,弓箭的数量就相当于是非交叉区间的数量,只要把弓箭那道题目代码里射爆气球的判断条件加个等号(认为[0,1][1,2]不是相邻区间),然后用总区间数减去弓箭数量 就是要移除的区间数量了。
把452.用最少数量的箭引爆气球代码稍做修改,就可以AC本题。
1 | class Solution { |
这里按照 左边界排序,或者按照右边界排序,都可以AC,原理是一样的。
1 | class Solution { |
452. 用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
- 输入:points = [[10,16],[2,8],[1,6],[7,12]]
- 输出:2
- 解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:
- 输入:points = [[1,2],[3,4],[5,6],[7,8]]
- 输出:4
示例 3:
- 输入:points = [[1,2],[2,3],[3,4],[4,5]]
- 输出:2
示例 4:
- 输入:points = [[1,2]]
- 输出:1
示例 5:
- 输入:points = [[2,3],[2,3]]
- 输出:1
提示:
- 0 <= points.length <= 10^4
- points[i].length == 2
- -2^31 <= xstart < xend <= 2^31 - 1
思路
如何使用最少的弓箭呢?
直觉上来看,貌似只射重叠最多的气球,用的弓箭一定最少,那么有没有当前重叠了三个气球,我射两个,留下一个和后面的一起射这样弓箭用的更少的情况呢?
尝试一下举反例,发现没有这种情况。
那么就试一试贪心吧!局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。
算法确定下来了,那么如何模拟气球射爆的过程呢?是在数组中移除元素还是做标记呢?
如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。
但仔细思考一下就发现:如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remove气球,只要记录一下箭的数量就可以了。
以上为思考过程,已经确定下来使用贪心了,那么开始解题。
为了让气球尽可能的重叠,需要对数组进行排序。
那么按照气球起始位置排序,还是按照气球终止位置排序呢?
其实都可以!只不过对应的遍历顺序不同,我就按照气球的起始位置排序了。
既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。
从前向后遍历遇到重叠的气球了怎么办?
如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)
可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
C++代码如下:
1 | class Solution { |
- 时间复杂度:O(nlog n),因为有一个快排
- 空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
可以看出代码并不复杂。
注意事项
注意题目中说的是:满足 xstart ≤ x ≤ xend,则该气球会被引爆。那么说明两个气球挨在一起不重叠也可以一起射爆,
所以代码中 if (points[i][0] > points[i - 1][1])
不能是>=
总结
这道题目贪心的思路很简单也很直接,就是重复的一起射了,但本题我认为是有难度的。
就算思路都想好了,模拟射气球的过程,很多同学真的要去模拟了,实时把气球从数组中移走,这么写的话就复杂了。
而且寻找重复的气球,寻找重叠气球最小右边界,其实都有代码技巧。
贪心题目有时候就是这样,看起来很简单,思路很直接,但是一写代码就感觉贼复杂无从下手。
这里其实是需要代码功底的,那代码功底怎么练?
多看多写多总结!
860.柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
- 输入:[5,5,5,10,20]
- 输出:true
- 解释:
- 前 3 位顾客那里,按顺序收取 3 张 5 美元的钞票。
- 第 4 位顾客那里,收取一张 10 美元的钞票,并返还 5 美元。
- 第 5 位顾客那里,找还一张 10 美元的钞票和一张 5 美元的钞票。
- 由于所有客户都得到了正确的找零,所以输出 true。
示例 2:
- 输入:[5,5,10]
- 输出:true
示例 3:
- 输入:[10,10]
- 输出:false
示例 4:
- 输入:[5,5,10,10,20]
- 输出:false
- 解释:
- 前 2 位顾客那里,按顺序收取 2 张 5 美元的钞票。
- 对于接下来的 2 位顾客,收取一张 10 美元的钞票,然后返还 5 美元。
- 对于最后一位顾客,无法退回 15 美元,因为现在只有两张 10 美元的钞票。
- 由于不是每位顾客都得到了正确的找零,所以答案是 false。
提示:
- 0 <= bills.length <= 10000
- bills[i] 不是 5 就是 10 或是 20
思路
这是前几天的leetcode每日一题,感觉不错,给大家讲一下。
这道题目刚一看,可能会有点懵,这要怎么找零才能保证完成全部账单的找零呢?
但仔细一琢磨就会发现,可供做判断的空间非常少!
只需要维护三种金额的数量,5,10和20。
有如下三种情况:
- 情况一:账单是5,直接收下。
- 情况二:账单是10,消耗一个5,增加一个10
- 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5
此时大家就发现 情况一,情况二,都是固定策略,都不用来做分析了,而唯一不确定的其实在情况三。
而情况三逻辑也不复杂甚至感觉纯模拟就可以了,其实情况三这里是有贪心的。
账单是20的情况,为什么要优先消耗一个10和一个5呢?
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。
局部最优可以推出全局最优,并找不出反例,那么就试试贪心算法!
C++代码如下:
1 | class Solution { |
- 时间复杂度: O(n)
- 空间复杂度: O(1)
总结
相信自己,细心分析!!