动态规划 1️⃣
什么是动态规划
动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,
例如:有N件物品和一个最多能背重量为W
的背包。第i件物品的重量是weight[i]
,得到的价值是value[i]
。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
动态规划中dp[j]
是由dp[j-weight[i]]
推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])
。
但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。
所以贪心解决不了动态规划的问题。
动态规划的解题步骤
做动规题目的时候,会陷入一个误区,就是以为把状态转移公式背下来,照葫芦画瓢改改,就开始写代码,甚至把题目AC之后,都不太清楚dp[i]表示的是什么。
这就是一种朦胧的状态,然后就把题给过了,遇到稍稍难一点的,可能直接就不会了,然后看题解,然后继续照葫芦画瓢陷入这种恶性循环中。
状态转移公式(递推公式)是很重要,但动规不仅仅只有递推公式。
对于动态规划问题,拆解为如下五步曲
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
为什么要先确定递推公式,然后在考虑初始化呢?
因为一些情况是递推公式决定了dp数组要如何初始化!
动态规划应该如何debug
最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!
做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。
如果遇到问题,可以自己先思考这三个问题:
- 这道题目我举例推导状态转移公式了么?
- 我打印dp数组的日志了么?
- 打印出来了dp数组和我想的一样么?
如果这灵魂三问自己都做到了,基本上这道题目也就解决了,或者更清晰的知道自己究竟是哪一点不明白,是状态转移不明白,还是实现代码不知道该怎么写,还是不理解遍历dp数组的顺序。
思路
斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。
因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。
但代码随想录的风格是:简单题目是用来加深对解题方法论的理解的。
通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。
对于动规,如果没有方法论的话,可能简单题目可以顺手一写就过,难一点就不知道如何下手了。
所以我总结的动规五部曲,是要用来贯穿整个动态规划系列的,就像之前讲过二叉树系列的递归三部曲 (opens new window),回溯法系列的回溯三部曲 (opens new window)一样。后面慢慢大家就会体会到,动规五部曲方法的重要性。
509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。
示例 1:
- 输入:2
- 输出:1
- 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
- 输入:3
- 输出:2
- 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
- 输入:4
- 输出:3
- 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
- 0 <= n <= 30
思路
通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。
动态规划
动规五部曲:
这里我们要用一个一维dp数组来保存递归的结果
- 确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
- 确定递推公式
为什么这是一道非常简单的入门题目呢?
因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
2 .dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:
1 | dp[0] = 0; |
- 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
- 举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
以上我们用动规的方法分析完了,C++代码如下:
1 | class Solution { |
- 时间复杂度:O(n)
- 空间复杂度:O(n)
当然可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列。
代码如下:
1 | class Solution { |
- 时间复杂度:O(n)
- 空间复杂度:O(1)
递归解法
本题还可以使用递归解法来做
代码如下:
1 | class Solution { |
- 时间复杂度:O(2^n)
- 空间复杂度:O(n),算上了编程语言中实现递归的系统栈所占空间
70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
- 输入: 2
- 输出: 2
- 解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
- 输入: 3
- 输出: 3
- 解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
思路
本题大家如果没有接触过的话,会感觉比较难,多举几个例子,就可以发现其规律。
爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。
那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。
所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。
我们来分析一下,动规五部曲:
定义一个一维数组来记录不同楼层的状态
- 确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
- 确定递推公式
如何可以推出dp[i]呢?
从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。
在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。
这体现出确定dp数组以及下标的含义的重要性!
- dp数组如何初始化
再回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]种方法。
那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。
例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。
但总有点牵强的成分。
那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.
其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1。
从dp数组定义的角度上来说,dp[0] = 0 也能说得通。
需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。
所以本题其实就不应该讨论dp[0]的初始化!
我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。
所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。
- 确定遍历顺序
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
- 举例推导dp数组
举例当n为5的时候,dp table(dp数组)应该是这样的
如果代码出问题了,就把dp table 打印出来,看看究竟是不是和自己推导的一样。
此时大家应该发现了,这不就是斐波那契数列么!
唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!
以上五部分析完之后,C++代码如下:
1 | // 版本一 |
- 时间复杂度:
- 空间复杂度:
当然依然也可以,优化一下空间复杂度,代码如下:
1 | // 版本二 |
- 时间复杂度:
- 空间复杂度:
后面将讲解的很多动规的题目其实都是当前状态依赖前两个,或者前三个状态,都可以做空间上的优化,但我个人认为面试中能写出版本一就够了哈,清晰明了,如果面试官要求进一步优化空间的话,我们再去优化。
因为版本一才能体现出动规的思想精髓,递推的状态变化。
拓展
这道题目还可以继续深化,就是一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。
这又有难度了,这其实是一个完全背包问题,但力扣上没有这种题目,大家可以去卡码网去做一下 57. 爬楼梯(opens new window)
所以后续我在讲解背包问题的时候,今天这道题还会从背包问题的角度上来再讲一遍。 如果想提前看一下,可以看这篇:70.爬楼梯完全背包版本(opens new window)
这里我先给出本题的代码:
1 | class Solution { |
代码中m表示最多可以爬m个台阶。
以上代码不能运行哈,我主要是为了体现只要把m换成2,粘过去,就可以AC爬楼梯这道题,不信你就粘一下试试。
此时我就发现一个绝佳的大厂面试题,第一道题就是单纯的爬楼梯,然后看候选人的代码实现,如果把dp[0]的定义成1了,就可以发难了,为什么dp[0]一定要初始化为1,此时可能候选人就要强行给dp[0]应该是1找各种理由。那这就是一个考察点了,对dp[i]的定义理解的不深入。
然后可以继续发难,如果一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。这道题目leetcode上并没有原题,绝对是考察候选人算法能力的绝佳好题。
这一连套问下来,候选人算法能力如何,面试官心里就有数了。
其实大厂面试最喜欢的问题就是这种简单题,然后慢慢变化,在小细节上考察候选人。
746. 使用最小花费爬楼梯
-
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
思路
修改之后的题意就比较明确了,题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。
- 确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。
- 确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
- dp数组如何初始化
看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。
那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。
这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。
新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。
所以初始化 dp[0] = 0,dp[1] = 0;
- 确定遍历顺序
最后一步,递归公式有了,初始化有了,如何遍历呢?
本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。
因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。
但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。
例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维dp数组的时候遍历背包容量为什么要倒序呢?这些都与遍历顺序息息相关。当然背包问题后续代码随想录都会重点讲解的!
- 举例推导dp数组
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:
如果大家代码写出来有问题,就把dp数组打印出来,看看和如上推导的是不是一样的。
以上分析完毕,整体C++代码如下:
1
2
3
4
5
6
7
8
9
10
11
12class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size() + 1);
dp[0] = 0; // 默认第一步都是不花费体力的
dp[1] = 0;
for (int i = 2; i <= cost.size(); i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}
};- 时间复杂度:O(n)
- 空间复杂度:O(n)
还可以优化空间复杂度,因为dp[i]就是由前两位推出来的,那么也不用dp数组了,C++代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14// 版本二
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int dp0 = 0;
int dp1 = 0;
for (int i = 2; i <= cost.size(); i++) {
int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);
dp0 = dp1; // 记录一下前两位
dp1 = dpi;
}
return dp1;
}
};- 时间复杂度:O(n)
- 空间复杂度:O(1)
当然如果在面试中,能写出版本一就行,除非面试官额外要求 空间复杂度,那么再去思考版本二,因为版本二还是有点绕。版本一才是正常思路。
拓展
旧力扣描述,如果按照 第一步是花费的,最后一步不花费,那么代码是这么写的,提交也可以通过
1
2
3
4
5
6
7
8
9
10
11
12
13
14// 版本一
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size());
dp[0] = cost[0]; // 第一步有花费
dp[1] = cost[1];
for (int i = 2; i < cost.size(); i++) {
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
}
// 注意最后一步可以理解为不用花费,所以取倒数第一步,第二步的最少值
return min(dp[cost.size() - 1], dp[cost.size() - 2]);
}
};