动态规划 9️⃣
583. 两个字符串的删除操作
给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。
示例:
- 输入: “sea”, “eat”
- 输出: 2
- 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"
思路
动态规划一
本题和动态规划:115.不同的子序列相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。
这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][j]
:以i-1
为结尾的字符串word1
,和以j-1
位结尾的字符串word2
,想要达到相等,所需要删除元素的最少次数。
这里dp数组的定义有点点绕,大家要撸清思路。
- 确定递推公式
- 当
word1[i - 1]
与word2[j - 1]
相同的时候 - 当
word1[i - 1]
与word2[j - 1]
不相同的时候
当word1[i - 1]
与 word2[j - 1]
相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1]
与 word2[j - 1]
不相同的时候,有三种情况:
情况一:删word1[i - 1]
,最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1]
,最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]
和word2[j - 1]
,操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1]
与 word2[j - 1]
不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2
,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]
和word2[j - 1]
,dp[i][j-1]
本来就不考虑 word2[j - 1]
了,那么我在删 word1[i - 1]
,是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1
。
- dp数组如何初始化
从递推公式中,可以看出来,dp[i][0]
和 dp[0][j]
是一定要初始化的。
dp[i][0]
:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i
。
dp[0][j]
的话同理,所以代码如下:
1 | vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1)); |
- 确定遍历顺序
从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1);
和dp[i][j] = dp[i - 1][j - 1]
可以看出dp[i][j]
都是根据左上方、正上方、正左方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]
可以根据之前计算出来的数值进行计算。
- 举例推导dp数组
以word1:“sea”,word2:"eat"为例,推导dp数组状态图如下:
以上分析完毕,代码如下:
1 | class Solution { |
- 时间复杂度: O(n * m)
- 空间复杂度: O(n * m)
动态规划二
本题和1143.最长公共子序列基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。
代码如下:
1 | class Solution { |
- 时间复杂度: O(n * m)
- 空间复杂度: O(n * m)
72. 编辑距离
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
-
插入一个字符
-
删除一个字符
-
替换一个字符
-
示例 1:
-
输入:word1 = “horse”, word2 = “ros”
-
输出:3
-
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’) -
示例 2:
-
输入:word1 = “intention”, word2 = “execution”
-
输出:5
-
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
- 0 <= word1.length, word2.length <= 500
- word1 和 word2 由小写英文字母组成
思路
编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。
编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。
接下来我依然使用动规五部曲,对本题做一个详细的分析:
1. 确定dp数组(dp table)以及下标的含义
dp[i][j]
表示以下标i-1
为结尾的字符串word1
,和以下标j-1
为结尾的字符串word2
,最近编辑距离为dp[i][j]
。
其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。
2. 确定递推公式
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
1 | if (word1[i - 1] == word2[j - 1]) |
也就是如上4种情况。
if (word1[i - 1] == word2[j - 1])
那么说明不用任何编辑,dp[i][j]
就应该是 dp[i - 1][j - 1]
,即dp[i][j] = dp[i - 1][j - 1];
此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]
呢?
那么就在回顾上面讲过的dp[i][j]
的定义,word1[i - 1]
与 word2[j - 1]
相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2
的最近编辑距离dp[i - 1][j - 1]
就是 dp[i][j]
了。
在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]
的定义,就明白了。
if (word1[i - 1] != word2[j - 1])
,此时就需要编辑了,如何编辑呢?
- 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i - 1][j] + 1;
- 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i][j - 1] + 1;
这里有同学发现了,怎么都是删除元素,添加元素去哪了。
word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"
,word1
删除元素'd'
和 word2
添加一个元素'd'
,变成word1="a", word2="ad"
, 最终的操作数是一样! dp数组如下图所示意的:
1 | a a d |
操作三:替换元素,word1
替换word1[i - 1]
,使其与word2[j - 1]
相同,此时不用增删加元素。
可以回顾一下,if (word1[i - 1] == word2[j - 1])
的时候的操作 是 dp[i][j] = dp[i - 1][j - 1]
对吧。
那么只需要一次替换的操作,就可以让 word1[i - 1]
和 word2[j - 1]
相同。
所以 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1])
时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
递归公式代码如下:
1 | if (word1[i - 1] == word2[j - 1]) { |
3. dp数组如何初始化
再回顾一下dp[i][j]
的定义:
dp[i][j]
表示以下标i-1
为结尾的字符串word1
,和以下标j-1
为结尾的字符串word2``,
最近编辑距离为dp[i][j]
。
那么dp[i][0]
和 dp[0][j]
表示什么呢?
dp[i][0]
:以下标i-1
为结尾的字符串word1
,和空字符串word2
,最近编辑距离为dp[i][0]
。
那么dp[i][0]
就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
同理dp[0][j] = j;
所以C++代码如下:
1 | for (int i = 0; i <= word1.size(); i++) dp[i][0] = i; |
4. 确定遍历顺序
从如下四个递推公式:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]
是依赖左方,上方和左上方元素的,如图:
所以在dp矩阵中一定是从左到右从上到下去遍历。
代码如下:
1 | for (int i = 1; i <= word1.size(); i++) { |
5. 举例推导dp数组
以示例1为例,输入:word1 = "horse", word2 = "ros"
为例,dp矩阵状态图如下:
以上动规五部分析完毕,C++代码如下:
1 | class Solution { |
- 时间复杂度: O(n * m)
- 空间复杂度: O(n * m)
647. 回文子串
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
- 输入:“abc”
- 输出:3
- 解释:三个回文子串: “a”, “b”, “c”
示例 2:
- 输入:“aaa”
- 输出:6
- 解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”
提示:输入的字符串长度不会超过 1000 。
思路
暴力解法
两层for循环,遍历区间起始位置和终止位置,然后还需要一层遍历判断这个区间是不是回文。所以时间复杂度:O(n^3)
动态规划
动规五部曲:
- 确定dp数组(dp table)以及下标的含义
如果大家做了很多这种子序列相关的题目,在定义dp数组的时候 很自然就会想题目求什么,就如何定义dp数组。
绝大多数题目确实是这样,不过本题如果定义,dp[i]
为 下标i结尾的字符串有 dp[i]
个回文串的话,会发现很难找到递归关系。
dp[i]
和 dp[i-1]
,dp[i + 1]
看上去都没啥关系。
所以要看回文串的性质。 如图:
在判断字符串S是否是回文,那么如果知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。
那么此时是不是能找到一种递归关系,也就是判断一个子字符串(字符串下标范围[i,j])是否回文,依赖于,子字符串(下标范围[i + 1, j - 1])) 是否是回文。
所以为了明确这种递归关系,的dp数组是要定义成一位二维dp数组。
布尔类型的dp[i][j]
:表示区间范围[i,j]
(注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]
为true,否则为false。
- 确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]
一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是回文子串
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
以上三种情况分析完了,那么递归公式如下:
1 | if (s[i] == s[j]) { |
result就是统计回文子串的数量。
注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。
- dp数组如何初始化
dp[i][j]
可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
所以dp[i][j]
初始化为false。
- 确定遍历顺序
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]
是否为true,在对dp[i][j]
进行赋值true的。
dp[i + 1][j - 1]
在 dp[i][j]
的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1]
,也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]
都是经过计算的。
有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]
都是经过计算的。
代码如下:
1 | for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序 |
- 举例推导dp数组
举例,输入:“aaa”,dp[i][j]
状态如下:
图中有6个true,所以就是有6个回文子串。
注意因为dp[i][j]
的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。
以上分析完毕,C++代码如下:
1 | class Solution { |
以上代码是为了凸显情况一二三,当然是可以简洁一下的,如下:
1 | class Solution { |
- 时间复杂度:O(n^2)
- 空间复杂度:O(n^2)
双指针法
动态规划的空间复杂度是偏高的,再看一下双指针法。
首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。
在遍历中心点的时候,要注意中心点有两种情况。
一个元素可以作为中心点,两个元素也可以作为中心点。
那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。
所以在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。
这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:
1 | class Solution { |
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
516.最长回文子序列
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1:
输入: “bbbab”
输出: 4
一个可能的最长回文子序列为 “bbbb”。
示例 2:
输入:“cbbd”
输出: 2
一个可能的最长回文子序列为 “bb”。
提示:
- 1 <= s.length <= 1000
- s 只包含小写英文字母
思路
刚刚做过了回文子串,求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。
回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。
回文子串,可以做这两题:
- 647.回文子串
- 5.最长回文子串
思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
**dp[i][j]
:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]
。
- 确定递推公式
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
如图:
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
加入s[j]的回文子序列长度为dp[i + 1][j]
。
加入s[i]的回文子序列长度为dp[i][j - 1]
。
那么dp[i][j]
一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
代码如下:
1 | if (s[i] == s[j]) { |
- dp数组如何初始化
首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2;
可以看出 递推公式是计算不到 i 和j相同时候的情况。
所以需要手动初始化一下,当i与j相同,那么dp[i][j]
一定是等于1的,即:一个字符的回文子序列长度就是1。
其他情况dp[i][j]
初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
中dp[i][j]
才不会被初始值覆盖。
1 | vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0)); |
- 确定遍历顺序
从递归公式中,可以看出,dp[i][j]
依赖于 dp[i + 1][j - 1]
,dp[i + 1][j]
和 dp[i][j - 1]
,如图:
所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的。
j的话,可以正常从左向右遍历。
代码如下:
1 | for (int i = s.size() - 1; i >= 0; i--) { |
- 举例推导dp数组
输入s:“cbbd” 为例,dp数组状态如图:
红色框即:dp[0][s.size() - 1]; 为最终结果。
以上分析完毕,C++代码如下:
1 | class Solution { |
- 时间复杂度: O(n^2)
- 空间复杂度: O(n^2)